Existence of solutions for a finite nonlinearly hyperelastic rod

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation

We consider a generalized hyperelastic-rod wave equation (or generalized Camassa– Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We establish existence of a strongly continuous semigroup of global weak solutions for any initial data from H1(R). We also present a “weak equals strong”uniqueness result.

متن کامل

H−perturbations of Smooth Solutions for a Weakly Dissipative Hyperelastic-rod Wave Equation

We consider a weakly dissipative hyperelastic-rod wave equation (or weakly dissipative Camassa–Holm equation) describing nonlinear dispersive dissipative waves in compressible hyperelastic rods. By fixed a smooth solution, we establish the existence of a strongly continuous semigroup of global weak solutions for any initial perturbation from H1(R). In particular, the supersonic solitary shock w...

متن کامل

Optimal control of a nonlinearly viscoelastic rod

We consider some typical optimal control problems for a nonlinear model of longitudinal vibrations in a viscoelastic rod. In trying to follow the usual pattern of showing that every innmizing sequence of controls contains a subsequence suitably converging to an optimal control, we confront the severe technical diiculty that the constitutive function cannot be uniformly Lipschitzian in its argum...

متن کامل

Existence of Multiple Solutions for a Nonlinearly Perturbed Elliptic Parabolic System in R

We consider the following nonlinearly perturbed version of the elliptic-parabolic system of Keller-Segel type: ∂tu−∆u +∇ · (u∇v) = 0, t > 0, x ∈ R, −∆v + v − v = u, t > 0, x ∈ R, u(0, x) = u0(x) ≥ 0, x ∈ R, where 1 < p < ∞. It has already been shown that the system admits a positive solution for a small nonnegative initial data in L1(R2) ∩ L2(R2) which corresponds to the local minimum of the as...

متن کامل

Geometric finite difference schemes for the generalized hyperelastic-rod wave equation

Geometric integrators are presented for a class of nonlinear dispersive equations which includes the Camassa-Holm equation, the BBM equation and the hyperelasticrod wave equation. One group of schemes is designed to preserve a global property of the equations: the conservation of energy; while the other one preserves a more local feature of the equations: the multi-symplecticity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1985

ISSN: 0022-247X

DOI: 10.1016/0022-247x(85)90096-4